DISPERSION OF NONLINEAR VISCOPLASTIC MEDIA
IN TUBES
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Dispersion is considered of nonlinear viscoplastic media in circular tubes in the case of
laminar motion, The problem is solved by using the approximate Taylor method, Results
are shown of computer calculations for various values of the rheological parameters t,
7, m, and n,

Mixing takes place in successive motion of mutually soluble fluids and a mixture convection zone is
formed with physical characteristics which are dependent on concentrations. In the general case the dynamics
of mixing systems depends on a multitude of factors; first of all, on the physical characteristics of the displaced
and displacing medium (viscosities, densities, temperature, etc.) and on the completeness of mixing.

In 1953 an approximation was analyzed by Taylor of the simple case of displacement of viscous mixing
fluids in capillary tubes in the case of laminar motion in which the mixing fluids possess the same properties
and are completely soluble in each other. He established that the dispersion of viscous fluids in slow laminar
flow is governed by the standard law of Fick's molecular diffusion; however, the mixing intensity is charac-
terized by the effective dispersion coefficient
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which depends on the Péclet diffusion parameter. Subsequently, a correction to the solution was introduced

by Aris [2] in the case of radial diffusion and diffusion parallel to the tube axis being of the same order, Quite
recently Maron [3] analyzed the problem in a more general formulation by eliminating several assumptions

of the Taylor method. In [4-6] the approach was generalized to non-Newtonian systems, In the present article
an attempt is made to extend the Taylor's diffusion theory to nonlinear viscoplastic media described by the
generalized rheological law [7]
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The assumption that the two media following each other possess the same rheological parameter enables one to
assume that the velocity distribution is independent of the distribution of the media and is given by
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If the diffusion parallel to the axis is ignored, then the concentration of the displacing fluid is determined by a
sy stem of equations which in their dimensionless form are given by
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By following the procedure of [5] one can obtain an expression for the effective dispersion coefficient:
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In particular, by modifying the rheological parameters m and n expressions are obtained for the effective dis-
persion coefficient in the case of non-Newtonian fluids which follow the laws of Hershel, Caisson, Ostwald de
Vallé, Bingham, and also of viscous media.

Similarly as in [1], one can obtain for the length L of the displacement zone (that is, the portion of the
tube between the sections with average concentrations 90% and 10%),

L=2362,Dv. 6)

Numerical computer calculations were carried out for various values of the limiting dynamic displacement
stress T, and the structural viscosity 75 if the parameters of the systems in motion vary within the limits m, n
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TABLE 1. Results of Computer Calculations of the Dimension-~
less Length of the Mixture Zone Using Formulas (5) and (6) for
R=0,124m,D;=1-10"° m?/sec

Ty = 10 N/, 1 = 0.04 N »sec/r 7o = 6 N/, = 0,015 N -sec/m’

e 0o (L/V3)-10-1| Pe-10-7 Pa (LVT)-10-7| Pe.10-7
1 0,71 4,181 18,683 1 0,77 3,283 18,073
0,85 0,561 4,597 ! 0,85 0,897 7,356

0,90 0,165 1,997 l 0,90 0,264 3,194

2 0,38 36,078 24,446 ! 0,45 ‘45,861 22,122
0,50 24,923 9,119 | 0,50 39,786 14,591

0,80 12,415 0,331 l 0,80 19,863 0,530

3 0,17 186,090 36,812 1 0,21 231,132 34,131
0,30 95,117 7,202 0,30 152,183 ! 11,523

0,60 43,006 0,228 \ 0,60 68,802 0,365

4 0,07 1011,528 58,958 | 0,10 1045,291 41,466
0,20 290,812 3,670 0,20 465,382 5,872

0,50 ;107,834 0,055 0,50 168,734 : 0,077

| i

=1,2, 3,4, 5, 6; examples are shown in Table 1 of the results of calculations on the BESM-6 computer for the
dimensionless length LA/T of the mixture zone depending on the P3clet diffusion number for various rheologi-
cal parameters.

An analysis of the data shows that with the parameters m and n increasing, that is, with a reduction in the
rheological properties of fluids [7], the dimensionless length of the mixture zone grows. The ratio 1y/n also
has an effect on the dispersion progress so that for m = n =1 (viscoplastic media) the length of the mixture
zone becomes shorter if the above ratio increases; for m = n > 1 the converse is true.

NOTATION

7, dynamic displacement stress; T, limiting dynamic displacement stress; 7, structural viscosity; ')'/,
displacement rate gradient; m, n, rheological parameters determined experimentally; v'y, velocity distribution
in a tube; v4y, average flow rate; Clr(n, the number of combinations; AP/2] , pressure drop in tube length; R, tube
radius; ry, radius of elastic core; r, coordinate in radial direction; x, coordinate parallel to tube axis; t, time;
p = r/R, dimensionless coordinate in radial direction; p, = ry/R, dimensionless radius of elastic core; ¢ = x/R,
dimensionless coordinate in the direction of tube axis; 7' = Dyt/R?, dimensionless time variable; vi = v{ R/Dy,
dimensionless velocity distribution; D;, molecular diffusion coefficient; D, effective dispersion coefficient;

Pevy R/Dy, Péclet diffusion parameter; C; , average concentration across tube section; L, length of mixture
zone,
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